Personal tools
Home » Working Groups » Valuation of Coastal Habitats » Relevant papers » Various Mangroves-Related Papers » The Importance of Mangroves, Mud and Sand Flats, and Seagrass Beds as Feeding Areas for Juvenile Fishes in Chwaka Bay, Zanzibar: Gut Content and Stable Isotope Analyses (Lugendo et al, 2006)
Navigation
Log in


Forgot your password?
 
Document Actions

The Importance of Mangroves, Mud and Sand Flats, and Seagrass Beds as Feeding Areas for Juvenile Fishes in Chwaka Bay, Zanzibar: Gut Content and Stable Isotope Analyses (Lugendo et al, 2006)

Journal of Fish Biology (2006) 69, 1639–1661
doi:10.1111/j.1095-8649.2006.01231.x, available online at http://www.blackwell-synergy.com




   The importance of mangroves, mud and sand flats, and
    seagrass beds as feeding areas for juvenile fishes in
     Chwaka Bay, Zanzibar: gut content and stable
             isotope analyses
     B. R. LUGENDO*†, I. NAGELKERKEN†‡, G.                             VELDE†§
                                            VAN DER
              AND Y. D. MGAYA*

    *Faculty of Aquatic Sciences and Technology, University of Dar es Salaam, P. O. Box
    35064, Dar es Salaam, Tanzania, †Department of Animal Ecology and Ecophysiology,
     Institute for Water and Wetland Research, Faculty of Science, Radboud University,
   Toernooiveld 1, 6525 ED Nijmegen, The Netherlands and §National Museum of Natural
         History, Naturalis, P.O. Box 9517, 2300 RA Leiden, The Netherlands

               (Received 8 December 2005, Accepted 5 July 2006)

   The relative importance of bay habitats, consisting of mangrove creeks and channel, seagrass beds,
   and mud and sand flats, as feeding grounds for a number of fish species was studied in Chwaka
   Bay, Zanzibar, Tanzania, using gut content analysis and stable isotope analysis of carbon and
   nitrogen. Gut content analysis revealed that within fish species almost the same food items were
   consumed regardless of the different habitats in which they were caught. Crustaceans (mainly
   copepods, crabs and shrimps) were the preferred food for most zoobenthivores and omnivores,
   while fishes and algae were the preferred food for piscivores and herbivores, respectively. The mean
   d13C values of fishes and food items from the mangrove habitats were significantly depleted to
   those from the seagrass habitats by 6Á9 and 9Á7% for fishes and food items, respectively, and to
   those from the mud and sand flats by 3Á5 and 5Á8%, respectively. Fishes and food items from the
   mud and sand flats were significantly depleted as compared to those of the seagrass habitats by 3Á4
   and 3Á9%, for fishes and food, respectively. Similar to other studies done in different geographical
   locations, the importance of mangrove and seagrass themselves as a primary source of carbon to
   higher trophic levels is limited. The different bay habitats were all used as feeding grounds by
   different fish species. Individuals of the species Gerres filamentosus, Gerres oyena, Lethrinus lentjan,
   Lutjanus fulviflamma, Pelates quadrilineatus and Siganus sutor appeared to show a connectivity with
   respect to feeding between different habitats by having d13C values which were in-between those of
   food items from two neighbouring habitats. This connectivity could be a result of either daily tidal
   migrations or recent ontogenetic migration.                     # 2006 The Authors

                            Journal compilation # 2006 The Fisheries Society of the British Isles

   Key words: feeding areas; habitat connectivity; juvenile fishes; mangroves; stable isotopes;
         seagrass beds.




 ‡Author to whom correspondence should be addressed. Tel.: þ31 24 365 2471; fax: þ31 24 365 2409;
email: i.nagelkerken@science.ru.nl

                             1639
 2006 The Authors
#
Journal compilation # 2006 The Fisheries Society of the British Isles
1640                    B. R. LUGENDO ET AL.


                       INTRODUCTION
Mangrove and seagrass habitats are often characterized by high densities of
juvenile fishes and are therefore often referred to as nursery habitats (Robertson
& Duke, 1987; Little et al., 1988; Parrish, 1989), although little evidence has yet
been provided for this (Beck et al., 2001; Chittaro et al., 2004). Protection
against predation, a high food abundance and easy interception of planktonic
fish larvae due to the large areas of the habitats are among the assumptions
used in explaining the high abundances of juvenile reef fish species in these
habitats (Parrish, 1989; Robertson & Blaber, 1992). Few studies have, how-
ever, tested these hypotheses (Laegdsgaard & Johnson, 2001; Cocheret de la
     `
Moriniere et al., 2004; Verweij et al., 2006) in contrast to numerous studies that
describe the fish assemblages of such habitats. The contradicting information
about the functioning of these habitats (Chong et al., 1990) creates a need to
investigate several regions independently. As pointed out by Hartill et al.
(2003), a better understanding is required of the resources used by different fish
species and life stages, and of how important different habitats are in maintain-
ing fish populations before management plans can be improved.
  Mangrove and seagrass habitats are often interlinked through diurnal and
tidal fish migrations (Rooker & Dennis, 1991; Vance et al., 1996; Nagelkerken
et al., 2000; Dorenbosch et al., 2004). Little is known, however, of the degree to
which these habitats are used as feeding habitats (Nagelkerken & van der Velde,
2004). Conventional techniques such as gut content analysis may provide unreli-
able results with respect to the diet composition and the source of the food due
to the following reasons: 1) differences in digestion rates of ingested material, 2)
contents can be hard to identify, 3) not all contents are digested, 4) it provides
just a snapshot of the true diet and 5) it does not show from where the food
originates (MacDonald et al., 1982; Gearing, 1991; Polis & Strong, 1996).
Nonetheless, it proves to be the only means of establishing details of the types
and amounts of prey taken (Sydeman et al., 1997). Analysis of the stable iso-
topes of carbon and nitrogen can provide a clearer understanding of diets
because they reflect the actual assimilation of organic matter into consumer tis-
sue rather than merely its consumption, and provide an average of the diet over
periods of weeks to months (Gearing, 1991). The power of stable isotope anal-
ysis as a tool in the investigation of aquatic food web structures and dietary
patterns is based on the significant and consistent differences in isotopic com-
position of different types of primary producers due to different photosynthetic
pathways or different inorganic carbon sources (Bouillon et al., 2002a). The sta-
ble isotopic composition of an animal reflects that of its diet with up to 1Á0%
enrichment in 13C and an average of 3Á5% enrichment in 15N between a consumer
and its food source (DeNiro & Epstein, 1978; Fry & Sherr, 1984; Minagawa &
Wada, 1984) due to the discrimination against lighter isotopes during assimilatory
and excretory functions within consumers (Minagawa & Wada, 1984). The actual
degree of fractionation, however, varies as a function of taxonomy, food quality
and environmental factors (Vanderklift & Ponsard, 2003).
  The aim of the present study was to establish the relative importance of dif-
ferent bay habitats, namely, mangroves, seagrass beds, and mud and sand flats,
as feeding areas for juveniles of a number of commercially important fish


                                                  # 2006 The Authors
 Journal compilation    2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
            #
                                                       1641
         FEEDING GROUNDS FOR TROPICAL JUVENILE FISHES


species in Chwaka Bay, Zanzibar. The combination of gut analysis and stable
isotope analysis was expected to provide information on both the type and re-
lative amount of prey ingested and to reflect the sources of the food assimilated
by different fish species over periods of weeks up to months. This study endeav-
oured to answer the following questions: 1) Is there a significant difference in
stable isotopic signature (C and N) of fishes and food items in different bay
habitats? 2) In which habitats do fishes eat and what do they consume? 3) To
what degree does connectivity between habitats due to feeding by fishes exist?


                MATERIALS AND METHODS

S T U D Y A R EA
  The study was carried out in Chwaka Bay, a shallow bay located on the east coast of
Unguja Island, Zanzibar, Tanzania (Fig. 1). Chwaka Bay consists of a large intertidal
flat partly covered with mixed assemblages of algae and seagrass beds with an average
depth of 3Á2 m, an estimated area of 50 km2 at high spring tide and 20 km2 at low
spring tide, and a mean tidal range of 3Á2 m (Cederlof et al., 1995; Mahongo, 1997).
                           ¨
Chwaka Bay is protected from the high-energy ocean on the east coast by a reef system
running along the coastline, as well as the Michamvi Peninsula (Fig. 1). On the land-
ward side, the bay is fringed by a dense mangrove forest of c. 3000 ha (Mohammed
et al., 2001). The mangrove forest has a number of tidal creeks fringed by prop roots
of the mangrove Rhizophora mucronata (Lamarck), with Mapopwe Creek (c. 2 m deep)
being the largest and the main water exchange route between the forest and the bay.
The mangrove creeks and the channel are intertidal in nature and none have any sig-
nificant freshwater input other than rain. The sampled habitats were: mangrove creeks,
mangrove channel, mud and sand flats, Chwaka seagrass beds (seagrass beds close to
the mangroves) and Marumbi seagrass beds (seagrass beds far from mangroves)
(Fig. 1). The sampled seagrass beds consisted of vast fields of Enhalus acoroides (L.)



            39°24'              39°30'
                                      N

                          4      8
                     0 km
          6°6'


                                        Tanzania Zanzibar
                      5
           Marumbi
                               Mic
                                ham




                                            Zanzibar
              Chwaka
                                  vi P




                        4
                                    e
                                   nin




                                             Chwaka
                   3
                                    sula




                                              Bay
          6°12'    2
                1



FIG. 1. Map of Unguja Island (Zanzibar) showing the location of Chwaka Bay and the sampled habitats
   (1, mangrove creeks; 2, mangrove channel; 3, mud and sand flats; 4, Chwaka seagrass beds; 5,
   Marumbi seagrass beds). Grey areas in Chwaka Bay indicate mangrove forests.


# 2006 The Authors
Journal compilation # 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
1642                    B. R. LUGENDO ET AL.


                                    ˚
Royle interrupted by small patches of Thalassodendron ciliatum (Forsskal) den Hartog
and the calcareous algae Halimeda spp.


S A M P L IN G D ES I GN
  Sample collections were carried out between November 2001 and October 2002. Fish
samples were collected using a seine, while macrofauna and macroflora samples were
collected by hand. Zooplankton samples were collected using a plankton net (80 mm
mesh). In the field, samples were put in a cool box and later frozen at À20° C pending
analysis. Fish species were selected in such a way that they represented commercially
important fish species found abundantly (see Table I) in more than one bay habitat,
and they included five feeding guilds: herbivores [Siganus sutor (Valenciennes)], insecti-
vores [Zenarchopterus dispar (Valenciennes)], omnivores [Monodactylus argenteus (L.)],
piscivores [Sphyraena barracuda (Walbaum)] and zoobenthivores [Gerres filamentosus
                 ˚              `
Cuvier, Gerres oyena (Forsskal), Lethrinus lentjan (Lacepede), Lutjanus fulviflamma
     ˚
(Forsskal) and Pelates quadrilineatus (Bloch)]. Fish guild membership was assigned using
Smith & Heemstra (1991), Khalaf & Kochzius (2002) and Froese & Pauly (2004), which
were also used as a guide for the sampling of potential food items for each fish species.
Detailed information on the environmental variables and the fish community structure
(and their temporal variation) of Chwaka Bay can be found in other studies (Lugendo
et al., 2005, in press; B. R. Lugendo, I. Nagelkerken, N. S. Jiddawi, G. van der Velde
and Y. D. Mgaya, unpubl. data).


S T A B L E I S O T O PE A N A L Y SI S
  Muscle tissues were removed from the fishes, while molluscs (gastropods and bi-
valves) and crustaceans (crabs and shrimps) were dissected from their exoskeleton
or shells prior to drying. The zooplankton samples were cleaned from detritus, sedi-
ments and other materials, under a dissecting microscope. Samples were dried at 70° C
for 48 h and ground to powder (homogeneous mixture). For samples rich in carbo-
nates such as detritus and whole individuals of small hermit crabs, sub-samples were
acid-washed and oven-dried. These sub-samples were used for stable carbon isotope
analysis only, while the remaining untreated sub-samples were used for stable nitrogen
isotope analysis since acid-washing interferes with stable nitrogen isotopes (Pinnegar &
Polunin, 1999). Samples were placed in ultra-pure tin capsules and combusted in a Carlo
ErbaÒ NA 1500 elemental analyser coupled on-line via a Finnigan Conflo III interface
with a ThermoFinnigan DeltaPlus mass spectrometer. Carbon and nitrogen isotope
ratios are expressed in the delta notation (d13C and d15N) relative to Vienna PDB
and atmospheric nitrogen. The potential food items and possible feeding habitat for
fishes were determined in view of the enrichment in isotope signatures of 1 and 3Á5%,
for carbon and nitrogen, respectively, between fishes and their potential food items
(DeNiro & Epstein, 1978; Minagawa & Wada, 1984). The term ‘macroinvertebrate’ is
used in the figures to denote zoobenthos and insects together, while the term ‘zoobenthos’
whenever used in the figures excludes the insects.

GUT CONTENT ANALYSIS
  For fishes, fork length (LF) was measured to the nearest 0Á1 cm, and the entire gut
extracted and frozen pending analysis. The gut was then split, the gut contents placed
in a Petri dish under a dissecting microscope and food items were identified to the low-
est taxa possible. The percentage of the total stomach volume that each food category
comprised was determined using the point method (Hyslop, 1980) in which the food
items in each fish gut was allotted a number of points depending on its abundance
and size of an organism (i.e. one large organism counted as much as a large number
of small ones). The points and the percentages they represented were 5 (75–100%), 4
(50–75%), 3 (25–50%), 2 (5–25%) and 1 (up to 5%). All the points gained by each


                                                  # 2006 The Authors
 Journal compilation    2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
            #
                                                           TABLE I. Stable carbon and nitrogen isotope signatures (mean Æ S.E.) of different fork length (LF) classes of fish species in different bay
                                                           habitats. The overall mean d13C is also shown where more than one size class of fish species was present in a habitat. Relative abundance and
                                                           relative biomass for each species in each bay habitat are also given. Numbers in bold print show relative proportions of each species for the
                                                           whole bay. Different superscript lowercase letters and numbers represent statistical post hoc results and denote significantly different
                                                              (P < 0Á05) stable carbon isotope values of a fish species for similar LF classes and for overall d13C among different bay habitats




# 2006 The Authors
                                                                                                              Overall       Relative   Relative
                                                                        LF class
                                                                             N
                                                           Species          (cm)        d13C       d15N        Species      mean d13C     abundance (%) biomass (%)

                                                           Gerres filamentosus                             Gerres filamentosus               7Á5      3Á6
                                                           Mangrove creeks       0–5    2        0Á3   8Á3    0Á1 Mangrove creeks                 9Á6      5Á8
                                                                                À21Á3  Æ         Æ                À21Á2 Æ 0Á4a
                                                           Mangrove creeks       5–10   3        0Á5a  8Á0    0Á1 Mangrove channel                24Á3     17Á0
                                                                                À21Á1  Æ         Æ                À21Á6 Æ 0Á5a
                                                           Mangrove channel      5–10   5        0Á5a  8Á4    0Á1 Mud and sand flats                0Á8      1Á1
                                                                                À21Á6  Æ         Æ                À19Á2 Æ 1Á0a
                                                           Mud and sand flats      5–10   4        1Á0a  8Á0    0Á2
                                                                                À19Á2  Æ         Æ
                                                           Gerres oyena                                Gerres oyena                  22Á6     21Á2
                                                           Mangrove creeks       5–10   10        0Á3a  7Á5    0Á2 Mangrove creeks                 7Á1      7Á1
                                                                                À19Á4  Æ         Æ
                                                           Mangrove channel      5–10   10        0Á7b  7Á4    0Á1 Mangrove channel                25Á6     35Á0
                                                                                À17Á0  Æ         Æ
                                                           Mud and sand flats      5–10   10        0Á3c  6Á6    0Á2 Mud and sand flats               62Á6     56Á2
                                                                                À13Á8  Æ         Æ
                                                           Chwaka seagrass beds    5–10   10        0Á7c  7Á5    0Á1 Chwaka seagrass beds              37Á6     38Á8
                                                                                À12Á8  Æ         Æ
                                                           Lethrinus lentjan                              Lethrinus lentjan                2Á7      1Á6
                                                           Mangrove channel      5–10   10        0Á3a  8Á0    0Á1 Mangrove channel          0Á3a    2Á4      1Á2
                                                                                À21Á8  Æ         Æ                À21Á8  Æ
                                                           Mud and sand flats      5–10   9        0Á7b  6Á8    0Á2 Mud and sand flats          0Á7b    6Á8      3Á4
                                                                                À19Á3  Æ         Æ                À19Á3  Æ
                                                           Chwaka seagrass beds    5–10   10        0Á2c  8Á0    0Á1 Chwaka seagrass beds        0Á2c    3Á9      3Á0
                                                                                À12Á3  Æ         Æ                À12Á3  Æ
                                                           Marumbi seagrass beds    5–10   4        0Á6c  8Á3    0Á2 Marumbi seagrass beds        0Á4c    1Á7      1Á1
                                                                                À12Á4  Æ         Æ                À12Á0  Æ
                                                           Marumbi seagrass beds   10–15   2        0Á1   8Á3    0Á0
                                                                                À11Á6  Æ         Æ
                                                           Lutjanus fulviflamma                             Lutjanus fulviflamma               2Á0      3Á3
                                                           Mangrove channel      5–10   4        0Á21  8Á5    0Á1 Mangrove creeks                 0Á8      2Á0
                                                                                À21Á0  Æ         Æ                À20Á1 Æ 0Á9a
                                                                                                                                    FEEDING GROUNDS FOR TROPICAL JUVENILE FISHES




                                                           Chwaka seagrass beds    5–10   4        0Á72  8Á0    0Á2 Mangrove channel                1Á4      2Á1
                                                                                À15Á2  Æ         Æ                À21Á8 Æ 0Á1a
                                                           Mangrove creeks      10–15   3        0Á9ab  8Á6    0Á4 Mud and sand flats                3Á8      5Á6
                                                                                À20Á1  Æ         Æ                À15Á2 Æ 0Á5b
                                                           Mangrove channel      10–15   2        0Á0a  9Á2    0Á0
                                                                                À22Á6  Æ         Æ
                                                           Mud and sand flats     10–15   5        0Á5c  7Á6    0Á2
                                                                                À15Á2  Æ         Æ




Journal compilation # 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
                                                                                                                                    1643
                                                                               TABLE I. Continued
                                                                                                                       1644




                                                                                                Overall       Relative   Relative
                                                            LF class
                                                                  N
                                                Species          (cm)        d13C       d15N      Species      mean d13C     abundance (%) biomass (%)

                                                Chwaka seagrass beds   10–15                                            5Á2      8Á2
                                                                  2 À14Á2 Æ 0Á0bc    9Á0 Æ 0Á2 Chwaka seagrass beds   À14Á5 Æ 0Á4b
                                                Marumbi seagrass beds   10–15                                            0Á3      0Á4




Journal compilation
                                                                  4 À11Á2 Æ 0Á4d     9Á0 Æ 0Á1 Marumbi seagrass beds  À11Á2 Æ 0Á4c




      #
                                                Monodactylus argenteus                        Monodactylus argenteus              3Á1      1Á2
                                                Mangrove creeks      0–5                                             5Á5      2Á8
                                                                  11 À22Á1 Æ 0Á2a     8Á0 Æ 0Á1 Mangrove creeks
                                                Mangrove channel      5–10                                            5Á5      3Á8
                                                                  3 À24Á0 Æ 0Á6b     8Á4 Æ 0Á4 Mangrove channel
                                                Pelates quadrilineatus                        Pelates quadrilineatus              2Á5      2Á4
                                                Mud and sand flats     5–10                                            2Á9      1Á9
                                                                  9 À17Á1 Æ 0Á1a     7Á2 Æ 0Á1 Mud and sand flats
                                                Chwaka seagrass beds    5–10                                            12Á3     10Á8
                                                                  10 À16Á2 Æ 0Á4b     7Á8 Æ 0Á2 Chwaka seagrass beds
                                                Siganus sutor                             Siganus sutor                  1Á6      3Á6
                                                Mud and sand flats     5–10   7        0Á5a                               1Á3      1Á2
                                                                    À22Á8  Æ     5Á6 Æ 0Á3 Mud and sand flats    À22Á8 Æ 0Á5a
                                                Chwaka seagrass beds    5–10   4        0Á8a                               2Á8      2Á0
                                                                    À20Á7  Æ     7Á0 Æ 0Á2 Chwaka seagrass beds   À19Á5 Æ 0Á7b
                                                Marumbi seagrass beds   5–10   4        0Á7b                               7Á4     11Á4
                                                                    À15Á5  Æ     6Á7 Æ 0Á3 Marumbi seagrass beds  À16Á1 Æ 0Á5c
                                                Chwaka seagrass beds   10–15   1           6Á1
                                                                    À15Á4
                                                Marumbi seagrass beds   10–15   11  À16Á2  Æ 0Á6   6Á5 Æ 0Á1
                                                Marumbi seagrass beds   15–20   11  À16Á5  Æ 0Á2   6Á3 Æ 0Á1
                                                                                                                       B. R. LUGENDO ET AL.




                                                Sphyraena barracuda                          Sphyraena barracuda               0Á9      3Á8
                                                Mangrove creeks      10–15   2        1Á01                         1Á0a    0Á9      3Á1
                                                                    À20Á6  Æ     9Á2 Æ 0Á0 Mangrove creeks     À20Á6  Æ
                                                Mangrove channel     10–15   5        0Á51                         0Á5a    1Á1      4Á5
                                                                    À19Á9  Æ     9Á8 Æ 0Á1 Mangrove channel     À19Á9  Æ
                                                Mud and sand flats     15–20   5        0Á2                          0Á4b    1Á5      7Á2
                                                                    À15Á7  Æ     8Á5 Æ 0Á2 Mud and flats       À15Á9  Æ
                                                Mud and sand flats     20–25   2        0Á5a                         1Á8b    0Á7      5Á9
                                                                    À16Á1  Æ     8Á2 Æ 0Á4 Chwaka seagrass beds   À14Á6  Æ
                                                Chwaka seagrass beds   20–25   2        1Á8a
                                                                    À14Á6  Æ     9Á1 Æ 0Á6
                                                Zenarchopterus dispar                         Zenarchopterus dispar              3Á9      4Á8
                                                Mangrove creeks      10–15                                            8Á2     14Á6
                                                                  9 À22Á8 Æ 0Á1a     8Á1 Æ 0Á1 Mangrove creeks
                                                Mangrove channel     10–15                                            2Á9      4Á9
                                                                  9 À22Á7 Æ 0Á1a     8Á2 Æ 0Á1 Mangrove channel
                                                N, sample size.




2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
                                    # 2006 The Authors
                                                       1645
         FEEDING GROUNDS FOR TROPICAL JUVENILE FISHES


food item were scaled down to percentages, to give percentage composition of each
food item in a diet of individual fish species examined.


STATISTICAL ANALYSIS
  Each bay habitat was treated as a sample unit. First, data were pooled for each hab-
itat for fishes and for food items, respectively, in order to test for the overall differences
among habitats. Subsequently, each fish species was treated separately. The numbers of
individual fishes analysed for each particular species (i.e. sample size) equalled the num-
ber of replicates (N; Table I). Data were checked for homogeneity of variances using
a Levene’s test (Field, 2000). In case variances were homogeneous, a one-way ANOVA
or t-test was employed to test for differences in stable isotope signatures of carbon for
fishes and food items among different habitats. Since fish sample sizes were very differ-
ent (see Table I), a Hochberg’s GT2 was used as a post hoc test due to its greater sta-
tistical power in such kinds of data compared to other tests (Field, 2000). All data that
did not show homogeneous variances were log10-transformed, and a Levene’s test was
performed once again. Either Kruskal–Wallis test or Mann–Whitney U-test (depending
on the number of sample units involved) on the non-transformed data was used as a
non-parametric test equivalent when variances were not homogeneous, even after log10-
transformation. A Games–Howell post hoc test was used following the Kruskal–Wallis
tests because it is more powerful and specifically designed for lack of homogeneity of var-
iances (Field, 2000). A significance level of P < 0Á05 was used in all tests. All analyses
were performed using the programme SPSS 11.5 for Windows (Field, 2000).


                         RESULTS

GUT CONTENT ANALYSIS
  Gut analysis indicated a food preference by different fish species, despite the
fact that they ingested a variety of food items (Table II). While some fish spe-
cies maintained a quite similar diet type regardless of the different habitats
from which they were caught (G. filamentosus: copepods; S. sutor: macroalgae;
S. barracuda: fishes; Z. dispar: insects), the diet of the other species (G. oyena,
L. lentjan, L. fulviflamma and M. argenteus) differed within species in different hab-
itats. The main food of G. oyena from the mangrove channel and from Chwaka
seagrass beds consisted mainly of copepods while fishes from mud and sand
flats fed mainly on detritus (Table II). Lethrinus lentjan fed mainly on ostracods
in the mangrove channel, on copepods on the mud and sand flats and on crus-
taceans and insects in the Chwaka seagrass beds. The diet of L. fulviflamma
consisted mainly of crustaceans in the mangroves, of copepods on the mud
and sand flats, of crabs and shrimps in Chwaka seagrass beds, and of crabs
and fishes in Marumbi seagrass beds. Monodactylus argenteus from the man-
grove creeks fed mainly on copepods while those from mangrove channel fed
mainly on algae (Table II).

M E A N d1 3 C S I G N A T U R E S F O R F I S H E S A N D F O O D I T E M S
  A clear gradient in d13C could be discerned for fishes as well as food items
from the mangrove habitats located deep into the bay to the seagrass beds at
the mouth of the bay (Fig. 2). Fishes and food items from the mangrove hab-
itats were significantly depleted (Hochberg’s GT2, P < 0Á001) to those from the

# 2006 The Authors
Journal compilation # 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
                                                TABLE II. Mean percentage composition of diet for different fish species and fork length (LF) classes in different bay habitats. Grey boxes
                                                                  highlight all food items with a relative abundance of >19%.
                                                                                                                                      1646




                                                                                                                       Unidentified Unidentified
                                                                               Crustacean                                    animal    plant
                                                         LF class
                                                Species/site    (cm)    N Copepod Crab Shrimp Ostracod  Parts  Fishes Detritus Gastropod Nematode Insect Algae Seagrass Sediment  material  material Other




Journal compilation
                                                Gerres filamentosus (ZB)




      #
                                                Mangrove     0–5, 5–10     3  95Á8         1Á0                                                  3Á2
                                                 creeks
                                                Mangrove     0–5, 5–10   45   71Á2      1Á9  0Á3         11Á4             0Á1          2Á3     9Á9        2Á8
                                                 channel
                                                Gerres oyena (ZB)
                                                Mangrove     5–10     15   42Á9         2Á0         15Á2   7Á1    0Á2              9Á8    12Á5    6Á2   4Á2
                                                 channel
                                                Mud and      0–5, 5–10,  16   21Á2         2Á1         53Á3         8Á4   0Á2  1Á9       8Á7              4Á2
                                                 sand flats     10–15
                                                Chwaka      10–15     11   39Á2         2Á7         26Á1   3Á4    4Á8                   11Á2        12Á6
                                                 seagrass beds
                                                Lethrinus lentjan (ZB)
                                                Mangrove     5–10       7  12Á9         53Á6  14Á3      2Á1                             17Á1
                                                 channel
                                                Mud and      5–10     12   70Á8             3Á1   8Á3  0Á3                0Á3            17Á0        0Á3
                                                 sand flats
                                                Chwaka      5–10, 10–15    3                33Á3                    33Á3               33Á3
                                                                                                                                      B. R. LUGENDO ET AL.




                                                 seagrass beds
                                                Lutjanus fulviflamma (ZB)
                                                Mangrove     5–10       6     19Á2  19Á2     27Á1  16Á7                                 16Á7        1Á2
                                                 channel
                                                Mud and      5–10, 10–15  12   39Á6      8Á3     20Á8      0Á3                        8Á3     8Á3        14Á3
                                                 sand flats
                                                Chwaka      5–10, 10–15  30       40Á4  22Á7         10Á4  0Á1                        4Á2    20Á1        2Á1
                                                 seagrass beds
                                                Marumbi      10–15     3       45Á8  20Á8         33Á3
                                                 seagrass beds
                                                Monodactylus argenteus (O)
                                                Mangrove     0–5, 5–10   18   46Á0     50*              0Á8                              3Á0        0Á2
                                                 creeks




2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
                                    # 2006 The Authors
                                                                                                TABLE II. Continued
                                                                                                                                 Unidentified Unidentified




# 2006 The Authors
                                                                                          Crustacean                                    animal    plant
                                                                    LF class
                                                            Species/site   (cm)    N Copepod Crab Shrimp Ostracod  Parts  Fishes Detritus Gastropod Nematode Insect Algae Seagrass Sediment  material  material Other

                                                           Mangrove     5–10     10  6Á3                      17Á8            10Á0  65Á0            0Á9
                                                            channel
                                                           Pelates quadrilineatus (ZB)
                                                           Mud and      5–10, 10–15  5  32Á5                      27Á5                       20Á0    20Á0
                                                            sand flats
                                                           Zenarchopterus dispar (ZB)
                                                           Mangrove     10–15, 15–20 9                       0Á3  11Á4   9Á7        69Á4  4Á2                  4Á2   0Á7
                                                            creeks
                                                           Mangrove     15–20     5                 20Á0                20Á0  40Á0               20Á0
                                                            channel
                                                           Siganus sutor (H)
                                                           Mangrove     5–10     5                                          92Á5                  7Á5
                                                            channel
                                                           Mud and      5–10, 10–15  5                          4Á4               72Á5  7Á5         15Á6
                                                            sand flats
                                                           Marumbi      5–10, 10–15, 23                          7Á1               79Á4  2Á3              11Á2
                                                            seagrass beds 15–20
                                                           Sphyraena barracuda (P)
                                                           Mangrove     10–15     5                     100Á0
                                                            channel
                                                           Mud and      10–15, 15–20, 7  16Á7                  62Á5  1Á0                             18Á8        1Á0
                                                            sand flats     20–25
                                                           Chwaka      10–20, 20–30 4  21Á9         1Á0        71Á9  1Á0                             1Á5        2Á7
                                                                                                                                                FEEDING GROUNDS FOR TROPICAL JUVENILE FISHES




                                                            seagrass beds

                                                           H, herbivore; O, omnivore; P, piscivore; ZB, zoobenthivore; N, number of fish analysed; *, shrimp larvae.




Journal compilation # 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
                                                                                                                                                1647
1648                    B. R. LUGENDO ET AL.


seagrass habitats by on average 6Á9 and 9Á7% for fishes and food items, respec-
tively, and from the mud and sand flats by on average 3Á5 and 5Á8%, respec-
tively. Food items from the mud and sand flats were significantly depleted
(Hochberg’s GT2, P < 0Á01) as compared to those of the seagrass habitats
by on average 3Á9%. Fishes from the mud and sand flats were depleted by
an average of 3Á4%, but this difference was not significant (Hochberg’s GT2,
P > 0Á05). There were no significant differences (Hochberg’s GT2, P > 0Á05)
in d13C between the two mangrove habitats (average difference of 0Á2 and
1Á5%, for fishes and food, respectively), and between the two seagrass habitats
(average difference of 1Á9 and 0Á2%, for fishes and food, respectively).

TROPHIC LEVELS OF FISHES AND FOOD ITEMS
 The food web in the bay showed various trophic levels. Detritus and plant
material were generally more depleted in d15N as compared to zooplankton
and macroinvertebrates (zoobenthos þ insects) found within the same habitat,
while fishes were the most enriched in d15N (Fig. 3). Also, clear gradients in
both d13C and d15N could be observed for different feeding guilds of fishes
and for different habitats [Fig. 3(b)]. Three trophic levels could be discerned
for the fishes, with increasing values of d15N from herbivores to omnivores
and zoobenthivores to piscivores. For each feeding guild, d13C increased along
the spatial gradient from mangroves in the bay to seagrass beds at the mouth
of the bay [Fig. 3(b)].

S T A B L E I S O T O PI C S I G N A T U R E S O F F I SH S PE C I E S
 Individual fish species from the mangrove habitats were generally more
depleted in d13C compared to those of the same species from either mud and

   9

   8

   7

   6
N
15




   5

   4

   3

   2
    –26  –25  –24     –23  –22   –21  –20   –19 –18    –17   –16  –15   –14   –13 –12
                               13
                                 C

FIG. 2. Pooled mean Æ S.E. stable carbon and nitrogen isotope values of fishes (), u, n, s, *) and food
   items (r, n, m, d, Â) in different bay habitats. (), r, mangrove creeks; u, n, mangrove channel;
   n, m, mud and sand flats; s, d, Chwaka seagrass beds; *, Â, Marumbi seagrass beds).


                                                  # 2006 The Authors
 Journal compilation    2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
            #
                                                                        1649
           FEEDING GROUNDS FOR TROPICAL JUVENILE FISHES


       (a)
    7


    6
                                                                Zoobenthos

    5

                                                                 Zoobenthos
    4                           Macro-
        Mangroves +                             Zooplankton   Zooplankton
                              invertebrates
        seagrasses
                                                               Zoobenthos
                  Zooplankton
                                              Detritus
          Detritus
                                                                Algae +
    3    Zooplankton          Macro-                                     seagrasses
                                                    Zooplankton
                                Algae +
                      invertebrates
                                seagrasses
                                                             Algae +
    2                                                         seagrasses

                                       Detritus
                Detritus
                          Algae +
    1                     seagrasses



    0
    –28      –26        –24       –22        –20      –18       –16       –14       –12
N
15




                                       13
                                        C

       (b)
   11

                           Mangrove channel
   10
                     Mangrove                                    Chwaka
                      creeks                                   seagrass beds   Marumbi
      Mangrove
    9                                                                seagrass beds
      channel
                        Mangrove creeks

                                              Mud and sand flats
    8                     Mangrove
                  Mangrove
                                          Mud and sand flats
                         channel                                Chwaka
                   creeks
                                                           seagrass beds

    7
                                Chwaka
                               seagrass beds          Marumbi
    6                                          seagrass beds
       Mud/sand flats



    5
    –25        –23          –21         –19         –17         –15        –13        –11
                                       13
                                        C

FIG. 3. Mean d13C and d15N values of different (a) trophic groups of food items in different bay habitats.
   (), mangrove creeks; u, mangrove channel; n, mud and sand flats; s, Chwaka seagrass beds; *,
   Marumbi seagrass beds), and (b) feeding guilds of fish in different bay habitats (n, piscivores; u,
   omnivores; ), zoobenthivores; s, herbivores).



sand flats or the seagrass habitats (Table I). The d13C depletion of individual
species was generally in the order: mangrove habitats < mud and sand flats
< seagrass habitats. The highest enrichment in d13C between two neighbouring
habitats was observed for individuals of the same LF class (10–15 cm) of L.
fulviflamma (mangrove channel and mud and sand flats: 7Á4%). With regard

# 2006 The Authors
Journal compilation # 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
1650                    B. R. LUGENDO ET AL.


to d15N, the herbivore S. sutor was the most depleted and the piscivore S. bar-
racuda the most enriched fish species, with a range of 2Á6–2Á8% (considering
the overall mean for LF classes) between the two species when occurring in the
same habitat. Considering individuals of the same species and similar size classes
in different bay habitats, d13C of five species, namely, G. oyena (5–10 cm), L.
lentjan (5–10 cm), L. fulviflamma (10–15 cm), P. quadrilineatus (5–10 cm) and
S. sutor (5–10 cm), differed significantly between habitats (one-way ANOVA,
d.f. ¼ 3,36, P < 0Á001 for G. oyena, Kruskal–Wallis, d.f. ¼ 3, P < 0Á001 for
L. lentjan, Kruskal–Wallis, d.f. ¼ 4, P < 0Á01 for L. fulviflamma, t-test, d.f. ¼ 1,
P < 0Á05 for P. quadrilineatus and one-way ANOVA, d.f. ¼ 2,12, P < 0Á001
for S. sutor), while those of G. filamentosus (5–10 cm) and Z. dispar (10–15 cm)
did not differ significantly between different bay habitats (Kruskal–Wallis,
d.f. ¼ 2, P > 0Á05 for G. filamentosus, Mann–Whitney U-test, d.f. ¼ 1, P >
0Á05 for Z. dispar). Similar results were obtained when different LF classes of indi-
vidual species were pooled within each habitat in which case also M. argenteus
differed significantly between the two mangrove habitats (t-test, d.f. ¼ 1, P <
0Á01). The post hoc results are presented in Table I.

ANALYSIS OF POTENTIAL FOOD AND FEEDING
H A B I T A T S O F D I F F E R E N T F I S H S P E C I ES
  The herbivore S. sutor ingested mainly macroalgae (Table II). The d13C and
15
d N values of the average diet of this species were generally quite similar to
those of macroalgae, but very distinct from those of seagrasses or mangrove
leaves [Fig. 4(a)]. Siganus sutor from the mud and sand flats showed stable iso-
tope signatures indicating various types of macroalgae from the mangrove chan-
nel as a potential food source, while fish from Chwaka seagrass beds showed
values indicating green and brown algae from mud and sand flats and the cal-
careous green algae (Halimeda sp.) from Chwaka seagrass beds as a potential
food source. Siganus sutor from Marumbi seagrass beds showed an intermediate
value for its average diet that lay in-between those of green algae from the mud
and sand flats, Halimeda sp. from Chwaka seagrass beds, and calcareous green
algae (Udotea sp.) and red algae from Marumbi seagrass beds.
  The gut content of the insectivore Z. dispar showed that insects formed a major
part of its diet (Table II), while the stable isotope values from both mangrove
habitats suggested a mixed diet of crabs (Sesarma sp. and Portunidae), shrimps
and insects from the mangroves [Fig. 4(b)].



FIG. 4. Mean Æ S.E. d13C and d15N values of fish species (a) Siganus sutor, (b) Zenarchopterus dispar, (c)
   Monodactylus argenteus, (d) Sphyraena barracuda, (e) Gerres filamentosus, (f) Gerres oyena, (g)
   Lethrinus lentjan, (h) Lutjanus fulviflamma and (i) Pelates quadrilineatus (large symbols) and potential
   food items (small symbols) in different bay habitats. (), mangrove creeks; u, mangrove channel; n,
   mud and sand flats; s, Chwaka seagrass beds; *, Marumbi seagrass beds). The arrow heads indicate
   the predicted average d13C and d15N values (based on the 1 and 3Á5% enrichment, respectively, in
   d13C and d15N between an animal and its food source) of the diet of fishes. The dashed lines combine
   potential food sources within a habitat. Prey species are depicted on lowest taxonomic level for each
   habitat in which the fish species was found; for the remainder of the habitats the prey species are
   pooled to higher taxonomic levels (e.g. macroinvertebrates, zoobenthos and seagrasses).


                                                  # 2006 The Authors
 Journal compilation    2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
            #
                                                                                         1651
          FEEDING GROUNDS FOR TROPICAL JUVENILE FISHES


         (a)
       8


       6
                                                        Red algae

                                  Red algae
                                                   Green algae
              Mangrove
                                                                    Thalassia
                                                              Green
                                              Green
               leaves
       4                                                             hemprichii
                                                              algae
                                              algae                            Enhalus
                                      Brown
                              Brown               Udotea sp.                        acoroides
                                      algae
                     Green       algae
                                                        Red algae Thalassodendron
          Red algae      algae
                                                                  ciliatum
                                                    Thalassodendron
                                           Halimeda sp.                             Thalassia
                                                    ciliatum
       2                                                        Eucheuma sp.         hemprichii
                           Halimeda                         Thalassia
                                     Jania sp.
                           sp.                            hemprichii
                                            Halimeda
            Halodule                               sp.   Enhalus acoroides         Enhalus
            wrightii
                                                      Cymodocea     sp.    acoroides
       0
                                                              Brown
                                                              algae
                                 Halodule
                                 wrightii

      –2
       –30   –28     –26      –24     –22      –20     –18      –16     –14      –12    –10       –8     –6
         (b)
       9


       7                               Insects
                                             Insects


                    Sesarma sp.
       5                                                                    Animals
                                     Shrimps
    N




                             Portunidae                                        Animals
    15




                                    Terebralia sp.
           Red algae
                          Zooplankton
                   Detritus      Brown algae Uca spp.                            Animals
       3          Zooplankton
                                              Algae +
                                             seagrasses                          Algae +
                                 Green algae
                    Detritus                                                   seagrasses

                           Cyanobacteria
       1
                                                                                   Algae +
                                                  Seagrasses
                  Halodule wrightii                                                        seagrasses



      –1
       –30    –28       –26        –24       –22      –20         –18      –16       –14       –12     –10
         (c)
      10


       8

                                Insects
                     Sesarma                    Insects                           Zoobenthos
       6                 sp.
                                        Shrimps        Zooplankton
                                                                       Zoobenthos
                          Portunidae
       4                                 Terebralia sp.          Zooplankton
           Red algae
                       Zooplankton Brown                                       Zoobenthos
                                                        Detritus
                              algae
                  Detritus                        Algae +
                        Green algae                                              Algae +
                                             seagrasses
                Zooplankton                                                     seagrasses
                                                            Zooplankton
                                         Uca
       2                                  spp.
                                                                         Algae +
                               Halimeda sp.
                                                                        seagrasses
                         Detritus                        Detritus
                                                               Thalassia
                                                               hemprichii
                 Halodule wrightii
       0
                                                 Halodule wrightii

      –2
       –30    –28       –26        –24      –22       –20       –18       –16      –14      –12      –10
                                              13
                                               C
FIG. 4. Continued

# 2006 The Authors
Journal compilation # 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
1652                          B. R. LUGENDO ET AL.


       11   (d)

       10

       9
         Omnivores        Carnivores
                                                                         Carnivores
       8                         Carnivores
                  Omnivores                      Carnivores
                                                               Carnivores
       7                                               Herbivores
                           ?
                                 Herbivores
       6                 ?
            Herbivores
                            ?                           ?              Zoobenthos
                                                             ?
                                                 ?
                                              ?
       5
           Zoobenthos

       4                                                              Zoobenthos
                                                       Zoobenthos

                             Zoobenthos
       3
       –25        –23         –21        –19          –17         –15         –13       –11

       9    (e)

       8

       7
                                                                      Benthic
                                                                    invertebrates
                                                        Bivalve sp.1
       6       Sesarma sp.
    N




                                                                Gastropods
                                  Shrimps
       5                                            Polychaetes
    15




                                                                   Benthic invertebrates
                                     Zooplankton             Terebralia sp.
       4             Portunidae
                                                                 Shrimps
                                                 Zooplankton
                                 Terebralia sp.
                    Zooplankton
       3                                              Zooplankton
            Zooplankton                                               Bivalve sp.2
                              Uca spp.
                                          Hermit crabs
       2                                                            Dotilla
                                                    Crab sp.          fenestrata

       1
       –28      –26      –24       –22       –20      –18       –16       –14      –12     –10

       9   (f)
       8
       7                                                           Isopods
                                                                     Cypraea sp.
                                Brittle stars
       6                                                             Polychaetes
              Sesarma sp.                                 Bivalve sp.1
                                                                 Thalamita sp.
                                                            Gastropods
                           Shrimps      Zooplankton
       5                                        Polychaetes
                                                            Zoobenthos
                                                                     Amphipods
              Portunidae
                                                         Shrimps
       4
                                                               Hermit crabs
           Zooplankton
                                                   Zooplankton Terebralia sp.
                           Terebralia sp.                                   Dotilla
       3                                                             fenestrata
           Zooplankton                                  Zooplankton
                        Uca spp.                               Bivalve sp.2
                                      Hermit crabs
       2
                                                 Crabs
                                                            Dotilla
       1                                                   fenestrata

       0
        –26       –24       –22        –20        –18         –16       –14        –12      –10
                                          13
                                           C

FIG. 4. Continued

                                                    # 2006 The Authors
 Journal compilation     2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
              #
                                                                                      1653
          FEEDING GROUNDS FOR TROPICAL JUVENILE FISHES


       10  (g)


        8                                                  Littoraria sp.
                                                  Brittle stars
                                                             Isopods
                                                           Cypraea sp.
                                                                         Polychaetes
                                         Brittle stars
        6     Sesarma sp.                                  Bivalve sp.1
                                                                     Thalamita sp.
                                                       Gastropods       Polychaetes
                               Shrimps
                                       Zooplankton Pinna sp.
                                                                     Amphipods
                                                   Polychaetes
                                                      Shrimps
        4                                                           Hermit crabs
                  Portunidae    Terebralia sp.              Zooplankton                       Dotilla fenestrata
                                                       Terebralia sp. Hermit crabs
                    Zooplankton                   Zooplankton
           Zooplankton           Uca spp.                                            Gastropods
                                                              Bivalve sp.2
                                           Hermit
        2                                   crabs
                                                   Crabs
                                                             Dotilla
                                                            fenestrata

        0
        –28     –26      –24       –22      –20      –18       –16        –14       –12      –10      –8

       10  (h)


        8                                                        Littoraria sp.

                                                             Isopods    Cypraea sp.
                                                       Brittle stars

                                                                         Polychaetes
                                       Brittle stars
        6     Sesarma sp.
                                                                Thalamita sp.
                                                        Polychaetes
     N




                                                 Pinna sp.        Gastropods
     15




                                      Zooplankton
                                                    Polychaetes     Amphipods
                               Shrimps
               Portunidae                                      Shrimps
                                                               Hermit crabs
        4                                               Bivalves
                                             Zooplankton                  Dotilla
                                                                    fenestrata
                    Zooplankton                                  Hermit
                              Terebralia sp.             Terebralia sp.
                                                            crabs
                                                Zooplankton
             Zooplankton                                                Zooplankton
                                                       Dotilla
                               Uca spp.
        2                                Hermit crabs        fenestrata

                                                  Crabs
                                                              Dotilla
                                                             fenestrata

        0
        –28     –26      –24      –22      –20      –18       –16        –14       –12      –10     –8

          (i)
        9
        8
        7                               Brittle stars

                                                             Brittle stars
        6
                                                                       Zoobenthos
        5                                                      Pinna sp.
                                       Zooplankton
                                                               Gastropod sp.
        4                                            Zooplankton                    Zoobenthos
                     Zooplankton                                     Zoobenthos
        3                         Zoobenthos
           Zooplankton
                                                        Zooplankton
                         Zoobenthos
                                             Hermit crabs
        2
        1
        0
        –28      –26       –24       –22       –20         –18        –16        –14       –12      –10
                                            13
                                               C

FIG. 4. Continued

# 2006 The Authors
Journal compilation # 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
1654                    B. R. LUGENDO ET AL.


  The omnivore M. argenteus ingested zooplankton, algae and some detritus
(Table II). The ingestion of zooplankton and detritus is supported by the
d13C for fish from the mangrove channel, although the enrichment in d15N
was larger than the usual 3Á5% [Fig. 4(c)]. For fish from the mangrove creeks,
the d13C signature suggests the diet to consist of a mixture of decapods (Sesarma
sp., Portunidae and shrimps) from the mangrove creeks and zooplankton and
detritus from the mangrove channel, but without an indication of dependence
on algae as a food source [Fig. 4(c)].
  Although the gut content analysis shows that fishes formed major part of the
diet of the piscivore S. barracuda, the stable isotope signatures of the average
diet of S. barracuda was not close enough to those of the selected fish species
of this study to depend solely on these species as a food source. Sphyraena
barracuda from the mangrove habitats had an isotope signature of its average
diet that was closest to that of herbivorous fishes from the mud and sand flats
and Chwaka seagrass beds, while for S. barracuda from the mud and sand flats
and Chwaka seagrass beds this was the case for herbivorous fish from the Mar-
umbi seagrass beds, with a possibility of feeding partly on macrofauna too
[Fig. 4(d)].
  In conformity with the gut content analysis where crustaceans (mainly cope-
pods, crabs and shrimps) formed a major part of the diet of most zoobenthi-
vores (Table II), G. filamentosus from the mangrove habitats had stable
isotope signatures for its average diet which lay in-between those of crustaceans
(Sesarma sp., Portunidae and shrimps) from the mangrove creeks, while fish
from mud and sand flats had isotope signatures for their average diet which
lay in-between values for shrimps from the mangrove creeks and zooplankton
from mud and sand flats [Fig. 4(e)]. Gerres oyena from the mangrove creeks
showed an isotope signature of its average diet close to the signatures of
shrimps from the mangrove creeks, gastropods (Terebralia sp.) from the man-
grove channel and zooplankton from the mud and sand flats, while G. oyena
from mangrove channel had signatures closest to zooplankton from the mud
and sand flats [Fig. 4(f)]. Gerres oyena from the mud and sand flats showed
an average diet signature close to that of bivalves, gastropod (Terebralia sp.)
and shrimps from mud and sand flats and zooplankton from the seagrass beds.
Gerres oyena from Chwaka seagrass beds showed a signature of its average diet
close to that of shrimps and gastropods (Terebralia sp.) from the mud and sand
flats, hermit crabs and amphipods from the Chwaka seagrass beds, and zoo-
benthos from the Marumbi seagrass beds [Fig. 4(f)]. Lethrinus lentjan from
the mangrove channel showed an isotope signature of its average diet that
was intermediate between crabs and shrimps of the mangrove creeks, while
for the mud and sand flats the signatures suggested a possible mix of shrimps,
crabs (Uca spp.) and gastropod (Terebralia sp.) from the mangroves and hermit
crabs and zooplankton from the mud and sand flats as a food source [Fig. 4(g)].
Lethrinus lentjan from the seagrass habitats showed an average stable iso-
tope signature for its diet that was close to that of the zoobenthos from the
seagrass habitats. The isotope signature of the average diet of L. fulviflamma
from the mangrove habitats showed proximity to isotope signatures of crabs
and shrimps from the mangrove habitats, while that of fish from the mud
and sand flats and Chwaka seagrass beds suggested an intermediate isotope

                                                  # 2006 The Authors
 Journal compilation    2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
            #
                                                       1655
         FEEDING GROUNDS FOR TROPICAL JUVENILE FISHES


signature of polychaetes, shrimps and zooplankton from the mud and sand flats
[Fig. 4(h)]. Lutjanus fulviflamma from the Marumbi seagrass bed showed a stable
isotope signature of its diet in close proximity to zoobenthos from the seagrass
beds. Pelates quadrilineatus from both the mud and sand flats and Chwaka sea-
grass beds showed isotope signatures for their average diet close to zooplankton
from mud and sand flats and the two seagrass beds [Fig. 4(i)].


C O N N E C T I V I T Y B ET W E E N H A B I T A T S
  The isotopic signatures of the fish species in relation to that of the possible
food items suggest four possibilities of feeding connectivity between adjacent
bay habitats (Fig. 4): 1) connectivity between the two mangrove habitats for
G. filamentosus, L. lentjan, L. fulviflamma, M. argenteus and Z. dispar, 2) connec-
tivity between mangrove habitats and mud and sand flats for G. filamentosus,
L. lentjan and S. sutor, 3) connectivity between mud and sand flats and seagrass
habitats for G. oyena, L. fulviflamma, P. quadrilineatus and S. sutor, and 4) con-
nectivity between the two seagrass habitats for L. fulviflamma and L. lentjan.


                        DISCUSSION
  Both gut content and stable carbon isotope analyses showed evidence that
the studied fish species generally relied as a food source on algae (herbivores)
and macroinvertebrates (omnivores and zoobenthivores), with crustaceans
(crabs, shrimps and copepods) playing a major role. The different d13C or
d15N values of the piscivore S. barracuda from those of herbivorous fishes
indicate a possible dependence for juveniles (10–25 cm) of this species on other
animals than fishes alone. Copepods were found to some degree in the guts of
the juveniles. In a study in Gazi Bay (Kenya), de Troch et al. (1998) identified
other animals like gammaridean amphipods, mysids, crabs and shrimps in the
stomachs of piscivorous fishes (including S. barracuda), an observation that in-
dicates that at juvenile stages S. barracuda is not solely piscivorous.
  Although the stable isotope signatures showed evidence for food dependence
of the studied fish species on mangrove and seagrass habitats, the direct con-
sumption of either mangrove or seagrass leaves seemed to be absent or very
low. The mean d13C of mangrove leaves of À28Á1% is similar to the overall
values for mangrove leaves recorded in the Caribbean, India, Malaysia and
in Kenya (Rao et al., 1994; Chong et al., 2001; Bouillon et al., 2002a; Cocheret
       `
de la Moriniere et al., 2003). Similar to what was observed by Sheaves & Molony
(2000), Bouillon et al. (2002b) and Kieckbusch et al. (2004), however, this
value is much more depleted as compared to either fish species (Sheaves &
Molony, 2000; Kieckbusch et al., 2004; this study) or to most of the macroin-
vertebrates (Hsieh et al., 2002; Bouillon et al., 2002b; Guest & Connolly, 2004;
Kieckbusch et al., 2004; Abed-Navandi & Dworschak, 2005) so as to function
as a (direct and significant) source of carbon for these fauna. The most
depleted fish species in this study was M. argenteus with a mean d13C of
À24Á0%, which is far more enriched as compared to mangrove leaves. Simi-
larly, Guest & Connolly (2004) in Moreton Bay (Australia), Macia (2004) in

# 2006 The Authors
Journal compilation # 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
1656                    B. R. LUGENDO ET AL.


Inhaca Island (Mozambique) and Abed-Navandi & Dworschak (2005) on the
Belize Barrier Reef (Caribbean Sea) observed that the d13C of most crabs
and shrimps from the mangrove habitats was close to that of microphytoben-
thos and distinct from that of mangrove leaves.
  Seagrasses (with exception of Halodule wrightii in the mangrove creeks and
channel with a mean d13C of À26Á3 and À20Á2%, respectively) were too far en-
riched in d13C (À15Á5 to À8Á2%) as compared to the herbivore S. sutor. This
suggests that seagrasses did not contribute to the diet of this herbivorous fish
species. The low contribution of seagrasses and the high contribution of algae
to the food web that was observed by Moncreiff & Sullivan (2001) in the Gulf
of Mexico and by Kieckbusch et al. (2004) in Biscayne Bay is another example
that seagrass plays a minor role in the food web and that algae are the primary
source of organic matter for higher trophic levels. Mangroves and seagrasses
do not appear to be direct sources of carbon in the diets of the fish species
studied; they probably serve as refugia as well as a substratum for a variety
of primary producers and consumers that are important in the food webs of
these habitats (Kieckbusch et al., 2004). Presence of food in addition to struc-
tural complexity has been reported to account for the strong association of
large numbers of juvenile fishes within mangrove forests (Laegdsgaard & Johnson,
2001). In addition, seagrass beds have also been reported to harbour a high
abundance of small invertebrates that are an important food of many juvenile
fish species (Nakamura & Sano, 2005).
  Using stable carbon isotope analysis different habitats were distinguished,
which functioned as a source of carbon. Fish species from the mangroves were
more depleted in d13C as compared to individuals of the same species caught
from either the mud and sand flats or seagrass habitats. Similarly, fish species
from the mud and sand flats were more depleted relative to individuals of the
same species occurring in seagrass beds. The d13C of food also showed this
trend. This is in agreement with other studies showing that the importance
of mangrove-derived carbon (if any) is limited to the surroundings of the man-
grove habitats, and decreases when moving away from the mangroves (Rodelli
et al., 1984; Newell et al., 1995; Dehairs et al., 2000; Chong et al., 2001; Guest
& Connolly, 2004). In agreement with Dehairs et al. (2000), this observation
calls for critical evaluation on the assumption that mangrove ecosystem repre-
sent a source of organic nutrients for the coastal ecosystems. Like in other
studies from around the world, the present study shows significant feeding of
fishes (and macrobenthos) in the mangroves (Rodelli et al., 1984; Marguillier
                                        `
et al., 1997; Sheaves & Molony, 2000; Chong et al., 2001; Cocheret de la Moriniere
et al., 2003; Guest & Connolly, 2004; Nagelkerken & van der Velde, 2004;
Abed-Navandi & Dworschak, 2005).
  The overlap in stable carbon isotopes of some fish species in different bay
habitats suggests connectivity between these habitats, with the possibility that
fishes used more than one habitat as a feeding ground. Some fish species (G.
filamentosus, L. lentjan and S. sutor) from the mud and sand flats showed a pos-
sible connection to the mangrove habitats as feeding habitats. Likewise, some
fish species (G. oyena, L. fulviflamma, P. quadrilineatus and S. sutor) from Chwaka
seagrass beds showed some evidence of using mud and sand flats as feeding
habitats. An explanation for this observation could firstly be recent ontogenetic

                                                  # 2006 The Authors
 Journal compilation    2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
            #
                                                       1657
         FEEDING GROUNDS FOR TROPICAL JUVENILE FISHES


                    `
migration (Cocheret de la Moriniere et al., 2003). The fishes could have
migrated from one habitat to another habitat recently, as a result of which they
still show part of the signature of their previously used habitat. It could take
several weeks to months to acquire the signature of the food from the new hab-
itat (Gearing, 1991; Hobson, 1999; Nagelkerken & van der Velde, 2004).
  Since the fish samples were collected during low tide, a second possibility is
that fishes migrated with the tides (with a spring tidal difference of 2 m) from
the mangroves to the mud and sand flats and from the mud and sand flats to
Chwaka seagrass beds. Migration in relation to feeding (Reis & Dean, 1981),
preference of particular salinities (Quinn & Kojis, 1987) and avoidance of being
stranded during low tide in areas that fall dry (van der Veer & Bergman, 1986)
has been suggested to be among the reasons that can trigger tidal migrations.
Since the d13C signature showed intermediate values between habitats, this
could suggest that they fed at low tide as well as high tide, in two different hab-
itats. Tidal migration between bay habitats in Chwaka Bay by Lutjanidae has
been shown by Dorenbosch et al. (2004), and other species possibly follow the
same pattern of behaviour.
  Distance to be covered during (tidal) migration, however, seems important in
terms of energy budget especially when juvenile fishes (<20 cm length) are con-
sidered, in which case long-distance migration costs may exceed energy intake
(Nøttestad et al., 1999). This may also be the case in the present study (in
which the majority of the fishes were 5–10 cm LF) where there appears to be
substantial connectivity for fish species between neighbouring habitats, but
not between habitats that were located far away from one another, such as
Marumbi seagrass beds located 8 and 6 km away from the mangrove and
mud and sand flat habitats, respectively.
  The significant difference observed for some species in stable carbon isotopes
in individuals of the same species and similar size classes between bay habitats
suggests two situations: 1) the individuals of each habitat belong to different
assemblages, each depending completely (in terms of nutrition) on different
bay habitats, and 2) the different bay habitats all have the potential of provid-
ing sufficient food sources to the fish assemblage found therein. The differences
in fish densities of particular species and size class in different bay habitats as
observed by Lugendo et al. (2005), however, suggests that other factors than
food alone control the distribution of juvenile fishes. As observed from other
studies, structural complexity and shade in relation to predation risk are
among the important factors in determining distribution of juvenile fishes
                              `
(Laegdsgaard & Johnson, 2001; Cocheret de la Moriniere et al., 2004; Verweij
et al., 2006).
  In conclusion, this study revealed that significant differences in stable isotope
signatures (C and N) exist in food and fishes from different bay habitats in
Chwaka Bay, which could be used to delineate feeding habitats of fishes. Fishes
appear to forage in all studied bay habitats. Seagrasses and mangroves do not
appear to be direct sources of carbon in the diets of studied fish species; rather,
they probably serve as refuge as well as a substratum for a variety of primary
producers and consumers that are important in the food webs of these habitats.
Some fish species of similar feeding guilds showed some degree of segregation
by feeding on different food resources. Zoobenthivores, however, showed an

# 2006 The Authors
Journal compilation # 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
1658                    B. R. LUGENDO ET AL.


overlap in diet and mainly fed on copepods, shrimps and crabs. There appears
to exist a connectivity for some fish species between different bay habitats with
respect to feeding (between the mud and sand flats and the mangroves, and
between the seagrass beds and the mud and sand flats), which could be a result
of either ontogenetic or tidal migration.

  Gratitude is expressed to M. A. Manzi, S. J. Simgeni and M. A. Makame for assis-
tance with the fieldwork. The administration and staff of the Institute of Marine Sciences
in Zanzibar provided logistical support and research facilities. This study was financially
supported by NUFFIC through the ENVIRONS-MHO Project implemented by the Fac-
ulty of Science, University of Dar es Salaam, Tanzania, Schure-Beijerinck-Popping Foun-
dation and Quo Vadis Fonds (Radboud University), The Netherlands. I. N. was
supported by a Vidi grant from the Netherlands Organisation for Scientific Research
(NWO). This is Centre for Wetland Ecology publication no. 415.

                          References
Abed-Navandi, D. & Dworschak, P. C. (2005). Food sources of tropical thalassidean
   shrimps: a stable-isotope study. Marine Ecology Progress Series 291, 159–168.
Beck, M. W., Heck, K. L. Jr, Able, K. W., Childers, D. L., Eggleston, D. B., Gillanders,
   B. M., Halpern, B., Hays, C. G., Hoshino, K., Minello, T. J., Orth, R. J., Sheridan,
   P. F. & Weinstein, M. P. (2001). The identification, conservation, and management
   of estuarine and marine nurseries for fish and invertebrates. BioScience 51,
   633–641.
Bouillon, S., Koedam, N. & Dehairs, F. (2002a). Primary producers sustaining macro-
   invertebrate communities in intertidal mangrove forests. Oecologia 130, 441–448.
Bouillon, S., Raman, A. V., Dauby, P. & Dehairs, F. (2002b). Carbon and nitrogen stable
   isotope ratios of subtidal benthic invertebrates in an estuarine mangrove ecosystem
   (Andhra Pradesh, India). Estuarine Coastal and Shelf Science 54, 901–913.
Cederlof, U., Rydberg, L., Mgendi, M. & Mwaipopo, O. (1995). Tidal exchange in
    ¨
   a warm tropical lagoon: Chwaka Bay, Zanzibar. Ambio 24, 458–464.
Chittaro, P. M., Fryer, B. J. & Sale, R. (2004). Discrimination of French grunts
   (Haemulon flavolineatum Desmarest, 1823) from mangrove and coral reef habitats
   using otolith microchemistry. Journal of Experimental Marine Biology and Ecology
   308, 168–183.
Chong, V. C., Sasekumar, A., Leh, M. U. C. & Cruz, R. D. (1990). The fish and prawn
   communities of a Malaysian coastal mangrove ecosystem, with comparisons to
   adjacent mud/sand flats and inshore waters. Estuarine Coastal and Shelf Science
   31, 703–722.
Chong, V. C., Low, C. B. & Ichikawa, T. (2001). Contribution of mangrove detritus to
   juvenile prawn nutrition: a dual stable isotope study in a Malaysian mangrove
   forest. Marine Biology 138, 77–86.
             `
Cocheret de la Moriniere, E., Pollux, B. J. A., Nagelkerken, I., Hemminga, M. A.,
   Huiskes, A. H. L. & van der Velde, G. (2003). Ontogenetic dietary changes of coral
   reef fishes in the mangrove-seagrass-reef continuum: stable isotope and gut-content
   analysis. Marine Ecology Progress Series 246, 279–289.
            `
Cocheret de la Moriniere, E., Nagelkerken, I., van der Meij, H. & van der Velde, G.
   (2004). What attracts juvenile coral reef fish to mangroves: habitat complexity or
   shade? Marine Biology 144, 139–145.
Dehairs, F., Rao, R. G., Chandra Mohan, P., Raman, A. V., Marguillier, S. & Hellings,
   L. (2000). Tracing mangrove carbon in suspended matter and aquatic fauna of the
   Gautami–Godavari Delta, Bay of Bengal (India). Hydrobiologia 431, 225–241.
DeNiro, M. J. & Epstein, S. (1978). Influence of diet on the distribution of carbon
   isotopes in animals. Geochimica et Cosmochimica Acta 45, 341–351.
Dorenbosch, M., Verweij, M. C., Nagelkerken, I., Jiddawi, N. & van der Velde, G.
   (2004). Homing and daytime tidal movements of juvenile snappers (Lutjanidae)


                                                  # 2006 The Authors
 Journal compilation    2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
            #
                                                       1659
         FEEDING GROUNDS FOR TROPICAL JUVENILE FISHES


    between shallow-water nursery habitats in Zanzibar, western Indian Ocean.
    Environmental Biology of Fishes 70, 203–209.
Field, A. (2000). Discovering Statistics Using SPSS for Windows. London: Sage Publica-
    tions.
Fry, B. & Sherr, E. B. (1984). d13C measurements as indicators of carbon flow on marine
    and freshwater ecosystems. Contributions in Marine Science 27, 13–47.
Gearing, J. N. (1991). The study of diet and trophic relationships through natural
    abundance 13C. In Carbon Isotope Techniques (Coleman, D. C. & Fry, B., eds), pp.
    201–218. San Diego, CA: Academic Press.
Guest, M. A. & Connolly, R. M. (2004). Fine-scale movement and assimilation of
    carbon in saltmarsh and mangrove habitats by resident animals. Aquatic Ecology
    38, 599–609.
                              ´
Hartill, B. W., Morrison, M. A., Smith, M. D., Boubee, J. & Parsons, D. M. (2003).
    Diurnal and tidal movements of snapper (Pagrus auratus, Sparidae) in an estuarine
    environment. Marine & Freshwater Research 54, 931–940.
Hobson, K. A. (1999). Tracing origins and migration of wildlife using stable isotopes:
    a review. Oecologia 120, 314–326.
Hsieh, H., Chen, C., Chen, Y. & Yang, H. (2002). Diversity of benthic organic matter
    flows through polychaetes and crabs in a mangrove estuary: d13C and d34S signals.
    Marine Ecology Progress Series 227, 145–155.
Hyslop, E. J. (1980). Stomach content analysis – a review of methods and their
    application. Journal of Fish Biology 17, 411–429.
Khalaf, M. A. & Kochzius, M. (2002). Changes in trophic community structure of shore
    fishes at an industrial site in the Gulf of Aqaba, Red Sea. Marine Ecology Progress
    Series 239, 287–299.
Kieckbusch, D. K., Koch, M. S., Serafy, J. E. & Anderson, W. T. (2004). Trophic
    linkages among primary producers and consumers in fringing mangroves of
    subtropical lagoons. Bulletin of Marine Science 74, 271–285.
Laegdsgaard, P. & Johnson, C. R. (2001). Why do juvenile fish utilise mangrove habitats?
    Journal of Experimental Marine Biology and Ecology 257, 229–253.
Little, M. C., Reay, P. J. & Grove, S. J. (1988). The fish community of an East African
    mangrove creek. Journal of Fish Biology 32, 729–747.
Lugendo, B. R., Pronker, A., Cornelissen, I., de Groene, A., Nagelkerken, I.,
    Dorenbosch, M., van der Velde, G. & Mgaya, Y. D. (2005). Habitat utilisation
    by juveniles of commercially important fish species in a marine embayment in
    Zanzibar, Tanzania. Aquatic Living Resources 18, 149–158.
Lugendo, B. R., de Groene, A., Cornelissen, I., Pronker, A., Nagelkerken, I., van der
    Velde, G. & Mgaya, Y. D. (in press). Spatial and temporal variation in
    fish community structure of a marine embayment in Zanzibar, Tanzania.
    Hydrobiologia.
MacDonald, J. S., Waiwood, K. G. & Green, R. H. (1982). Rates of different digestion
    of different prey in Atlantic cod (Gadus morhua), ocean pout (Macrozoarces
    americanus), winter flounder (Pseudopleuronectes americanus), and American plaice
    (Hippoglossoides platessoides). Canadian Journal of Fisheries and Aquatic Sciences
    39, 651–659.
Macia, A. (2004). Primary carbon sources for juvenile penaeid shrimps in a mangrove-
    fringed bay of Inhaca Island, Mozambique: a dual carbon and nitrogen isotope
    analysis. Western Indian Ocean Journal of Marine Science 3, 151–161.
Mahongo, S. B. (1997). Surface heat exchange and bottom reflection in a tidal, shallow
    tropical lagoon: Chwaka Bay, Zanzibar. MSc Thesis, Gothenburg University,
    Sweden.
Marguillier, S., van der Velde, G., Dehairs, F., Hemminga, M. A. & Rajagopal, S. (1997).
    Trophic relationships in an interlinked mangrove-seagrass ecosystem as traced by
    d13C an d15N. Marine Ecology Progress Series 151, 115–121.
Minagawa, W. & Wada, E. (1984). Stepwise enrichment of 15N along food chains: further
    evidence and the relation between d15N and animal age. Geochimica et Cosmochi-
    mica Acta 48, 1135 –1140.


# 2006 The Authors
Journal compilation # 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
1660                    B. R. LUGENDO ET AL.


Mohammed, S. M., Johnstone, R. W., Widen, B. & Jordelius, E. (2001). The role of
    mangroves in the nutrient cycling and productivity of adjacent seagrass commu-
    nities, Chwaka Bay, Zanzibar. In Marine Science Development in Tanzania and
    Eastern Africa. Proceedings of the 20th Anniversary Conference on Advances in
    Marine Science in Tanzania, 1999 (Richmond, M. & Francis, J., eds), pp. 205–226.
    Zanzibar: IMS/WIOMSA.
Moncreiff, C. A. & Sullivan, M. J. (2001). Trophic importance of epiphytic algae in
    subtropical seagrass beds: evidence from multiple stable isotope analyses. Marine
    Ecology Progress Series 215, 93–106.
Nagelkerken, I. & van der Velde, G. (2004). Relative importance of interlinked
    mangroves and seagrass beds as feeding habitats for juvenile reef fish on a
    Caribbean island. Marine Ecology Progress Series 274, 153–159.
                                         `
Nagelkerken, I., Dorenbosch, M., Verberk, W. C. E. P., Cocheret de la Moriniere, E. &
    van der Velde, G. (2000). Day-night shifts of fishes between shallow-water biotopes
    of a Caribbean bay, with emphasis on the nocturnal feeding of Haemulidae and
    Lutjanidae. Marine Ecology Progress Series 194, 55–64.
Nakamura, Y. & Sano, M. (2005). Comparison of invertebrate abundance in a seagrass
    bed and adjacent coral and sand areas at Amitori Bay, Iriomote Island, Japan.
    Fisheries Science 71, 573–550.
Newell, R. I. E., Marshall, N., Sasekumar, A. & Chong, V. C. (1995). Relative
    importance of benthic microalgae, phytoplankton, and mangroves as sources of
    nutrition for penaeid prawns and other coastal invertebrates from Malaysia.
    Marine Biology 123, 595–606.
Nøttestad, L., Giske, J., Chr. Holst, J. & Huse, G. (1999). A length-based hypothesis for
    feeding migrations in pelagic fish. Canadian Journal of Fisheries and Aquatic
    Sciences 56, 26–34.
Parrish, J. D. (1989). Fish communities of interacting shallow-water habitats in tropical
    oceanic regions. Marine Ecology Progress Series 58, 143–160.
Pinnegar, J. K. & Polunin, N. V. C. (1999). Differential fractionation of d13C and d15N
    among fish tissues: implication for the study of trophic interactions. Functional
    Ecology 13, 225–231.
Polis, G. & Strong, D. R. (1996). Food web complexity and community dynamics.
    American Naturalist 147, 813–846.
Quinn, N. J. & Kojis, B. L. (1987). The influence of diel cycle, tidal direction and trawl
    alignment on beam trawl catches in an equatorial estuary. Environmental Biology of
    Fishes 19, 297–308.
Rao, R. G., Woitchik, A. F., Goeyens, L., van Riet, A., Kazungu, J. & Dehairs, F.
    (1994). Carbon, nitrogen contents and stable isotope abundance in mangrove
    leaves from an east African coastal lagoon (Kenya). Aquatic Botany 47, 175–183.
Reis, R. R. & Dean, J. M. (1981). Temporal variations in the utilization of an intertidal
    creek by the Bay Anchovy (Anchoa mitchilli). Estuaries 4, 16–23.
Robertson, A. I. & Blaber, S. J. M. (1992). Plankton, epibenthos and fish communities.
    In Tropical Mangrove Ecosystems (Robertson, A. I. & Alongi, D. M., eds), pp.
    173–224. Washington, DC: American Geographical Union.
Robertson, A. I. & Duke, N. C. (1987). Mangrove as nursery sites: comparison of the
    abundance and species composition of fish and crustaceans in mangroves and
    other near shore habitats in tropical Australia. Marine Biology 96, 193–205.
Rodelli, M. R., Gearing, J. N., Gearing, P. J., Marshall, N. & Sasekumar, A. (1984).
    Stable isotope ratios as a tracer of mangrove carbon in Malaysian ecosystems.
    Oecologia 61, 326–333.
Rooker, J. R. & Dennis, G. D. (1991). Diel, lunar and seasonal changes in a mangrove
    fish assemblage off southwestern Puerto Rico. Bulletin of Marine Science 49,
    684–698.
Sheaves, M. & Molony, B. (2000). Short-circuit in the mangrove food chain. Marine
    Ecology Progress Series 199, 97–109.
Smith, M. M. & Heemstra, P. C. (Eds) (1991). Smith’s Sea Fishes, 1st edn. Johannesburg:
    Southern Book Publishers.


                                                  # 2006 The Authors
 Journal compilation    2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
            #
                                                       1661
         FEEDING GROUNDS FOR TROPICAL JUVENILE FISHES


Sydeman, W. J., Hobson, K. A., Pyle, P. & McLaren, E. B. (1997). Trophic relationships
   among seabirds in Central California. The Condor 99, 327–336.
de Troch, M., Mees, J. & Wakwabi, E. (1998). Diets of abundant fishes from beach seine
   catches in seagrass beds of a tropical bay (Gazi Bay, Kenya). Belgian Journal of
   Zoology 128, 135–154.
Vance, D. J., Haywood, M. D. E., Heales, D. S., Kenyon, R. A., Loneragan, N. R. &
   Pendrey, R. C. (1996). How far do prawns and fish move into mangroves?
   Distribution of juvenile banana prawns, Penaeus merguiensis, and fish in a tropical
   mangrove forest in northern Australia. Marine Ecology Progress Series 131,
   115–124.
Vanderklift, M. A. & Ponsard, S. (2003). Sources of variation in consumer-diet d15N
   enrichment: a meta-analysis. Oecologia 136, 169–182.
van der Veer, H. M. & Bergman, M. N. J. (1986). Development of tidally related
   behaviour of a newly settled 0-group plaice (Pleuronectes platessa) populations in
   the western Wadden Sea. Marine Ecology Progress Series 31, 121–129.
Verweij, M. C., Nagelkerken, I., de Graaff, D., Peeters, M., Bakker, E. J. & van der
   Velde, G. (2006). Structure, food and shade attract juvenile coral reef fish to
   mangrove and seagrass habitats: a field experiment. Marine Ecology Progress Series
   306, 257–268.

                     Electronic Reference
Froese, R. & Pauly, D. (Eds) (2004). FishBase. Available at www.fishbase.org (version
   08/2004).




# 2006 The Authors
Journal compilation # 2006 The Fisheries Society of the British Isles, Journal of Fish Biology 2006, 69, 1639–1661
by David Bael last modified 07-02-2007 14:54
 

Built with Plone